@ Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

The intuition behind
tree-based methods

Nina Zumel and John Mount
Win-Vector, LLC

Supervised Learning in R: Regression

Example: Predict animal intelligence from Gestation Time
and Litter Size

Intelligence as a function of Litter and Gestation time

Supervised Learning in R: Regression

Decision Trees

intelligence ~ Gestation + Litter Ru I S Of t h e fO rm:
Litter i= 1.15 | |
t1s e /fa AND b AND c THEN y
|
Litter >= 4.3 Gestation < 268
<43 >= 268

Non-linear concepts

I
Gestation >= 232 ‘
<232

Gestation < 140 \ o i nte rva I S

>=140

0.073 0.131 0.148 0.161
13.5% 39.6% 10.4% 7.3%

e non-monotonic relationships

non-additive interactions

e AND: similar to multiplication

Supervised Learning in R: Regression

Decision Trees

intelligence ~ Gestation + Litter

I
I
Litter >=1.15 I

<115
I

| I
Litter >=4.3 Gestation < 268

>= 268

I
Gestation >= 232 I
< 232

Gestatlon <140

>= 140
0.073 0.131 0.148 0 161
13.5% 39.6% 10.4% 7. 3%

e |F Litter < 1.15 AND Gestation > 268 — intelligence = 0.315
e |F Litter IN[1.15, 4.3) — intelligence = 0.131

Supervised Learning in R: Regression

Decision Trees

Pro: Trees Have an Expressive Con: Coarse-Grained Predictions
Concep t S’O ace Predicted vs. actual intelligence

Model RMSE '

linear 0.1200419

tree 0.1072732 u o

_.

o

=)
1

o

~

15
'

0.50-

0.25-

0.00 . ' '

0.1 0.2 0.3
pred

Supervised Learning in R: Regression

It's Hard for Trees to Express Linear Relationships

Trees Predict Axis-Aligned Regions It's Hard to Express Lines with
Decision tree concept regions St e p S

Linear vs Tree model predictions on linear data
[]
[]
7 e ©®
)
/
- L]
'/ '

station

Litter

Each color is a different predicted
value

Supervised Learning in R: Regression

Other Issues with Trees

e Tree with too many splits (deep tree):
= Too complex - danger of overfit
e Tree with too few splits (shallow tree):

= Predictions too coarse-grained

Supervised Learning in R: Regression

Ensembles of Trees

Ensemble Model Fits Animal Ensembles Give Finer-grained
Intelligence Data Better than Predictions than Single Trees
Single Tree

Predicted vs. actual intelligence

pred.Im

1.00-

Model RMSE 075

0.50-

linear 0.1200419

tree 0.1072732

random forest 0.0901681 | E:EZW

intelligence
[w]
a
o

Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!

Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

Random forests

Nina Zumel and John Mount
Win-Vector, LCC

Supervised Learning in R: Regression

Random Forests

Multiple diverse decision trees averaged together

e Reduces overfit

e Increases model expressiveness

e Finer grain predictions

Supervised Learning in R: Regression

Building a Random Forest Model

1. Draw bootstrapped sample from training data

2. For each sample grow a tree
e At each node, pick best variable to split on (from a random
subset of all variables)
e Continue until tree is grown
3. To score a datum, evaluate it with all the trees and average the

results.

Supervised Learning in R: Regression

Example: Bike Rental Data

> cnt ~ hr + holiday + workingday +
- weathersit + temp + atemp + hum + windspeed

Count of bikes rented by hour, first 2 weeks of January

500 -)

M |
AT Ty

200 -

100- \I | +

cnt
===

Random Forests with ranger()

> model <- ranger(fmla, bikesJan,
- num.trees = 500,
+ respect.unordered. factors = "order")

e formula, data
e num.trees (default 500) - use at least 200
e mtry - number of variables to try at each node

= default: square root of the total number of variables

e respect.unordered.factors - recommend set to "order"

» "safe" hashing of categorical variables

Supervised Learning in R: Regression

Supervised Learning in R: Regression

Random Forests with ranger()

> model

Ranger result

#Ho. ..
00B prediction error (MSE): 3103.623
R squared (00B): 0.7837386

Random forest algorithm returns estimates of out-of-sample
performance.

Supervised Learning in R: Regression

Predicting with a ranger() model

> bikesFeb$pred <- predict(model, bikesFeb)$predictions
predict() inputs:

e model

e data

Predictions can be accessed in the element predictions.

Supervised Learning in R: Regression

Evaluating the model

Calculate RMSE:

> bikesFeb %>%

+ mutate(residual = pred - cnt) %>%
+ summarize(rmse = sqrt(mean(residual”2)))
#t rmse

1 67.15169

Model RMSE

Quasipoisson 69.3

Random forests 67.15

Supervised Learning in R: Regression

Evaluating the model

Bike rentals, predictions vs actual, February - Random Forest Predicted and Actual Hourly Bike Rentals, February - Random Forest
600 - ['
400 -
400 -

o valuetype
b= =) - cnt
(& ®

> - & pred

200 -
200~
0- 0-
0 100 200 300 400 o 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!

Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

One-Hot-Encoding
Categorical Variables

Nina Zumel and John Mount
Win-Vector, LLC

Supervised Learning in R: Regression

Why Convert Categoricals Manually?

e Most R functions manage the conversion for you

= model.matrix()
e xgboost() does not

= Must convert categorical variables to numeric representation

e Conversion to indicators: one-hot encoding

Supervised Learning in R: Regression

One-hot-encoding and data cleaning with vtreat

Basic idea:

e designTreatmentsZ() to design a treatment p/an from the training data,
then
e prepare() to created "clean" data
= all numerical
= N0 MIssing values

= use prepare() with treatment plan for all future data

Supervised Learning in R: Regression

A Small vtreat Example

Training Data Test Data
X u y X u Yy
one 44 0.4855671 one 5 2.6488148
two 24 1.3683726 three 12 1.5012938
three 66 2.0352837 one 56 0.1993731
two 22 1.6396267 two 28 1.2778516

Supervised Learning in R: Regression

Create the Treatment Plan

> VarS <_ C("X"’ Ilull)
> treatplan <- designTreatmentsZ(dframe, varslist, verbose = FALSE)

Inputs to designTreatmentsZ()

e dframe: training data
e varlist: list of input variable names

e set verbose = FALSE to suppress progress messages

Supervised Learning in R: Regression

Get the New Variables

The scoreFrame describes the variable mapping and types

> (scoreFrame <- treatplan$scoreFrame %>%

- select(varName, origName, code))
#H# varName origName code
1 x _lev x.one X lev
2 x _lev x.three X lev
3 x_lev Xx.two x lev
4 X catP X catP
5 u clean u clean

Get the names of the new lev and clean variables

> (newvars <- scoreFrame %>%

+ filter(code %in% c("clean", "lev")) %>%

+ use series(varName))

[1] "x lev x.one" "X lev x.three" "x lev x.two" "u clean"

Supervised Learning in R: Regression

Prepare the Training Data for Modeling

> training.treat <- prepare(treatmentplan, dframe, varRestriction = newvars)
Inputs to prepare():

e treatmentplan: treatment plan
e dframe: data frame
e varRestriction: list of variables to prepare (optional)

= default: prepare all variables

Supervised Learning in R: Regression

Before and After Data Treatment

Training Data Treated Training Data
X u y X_lev_x.one | x_lev x.three | x lev x.two | u_clean
one 44 0.4855671 1 0 0 44
two 24 1.3683726 0 0 1 24
three 66 2.0352837 0 1 0 66
two 22 1.6396267 0 0 1 22

Supervised Learning in R: Regression

Prepare the Test Data Before Model Application

> (test.treat <- prepare(treatplan, test, varRestriction = newvars))

X lev _x.one x lev x.three x lev x.two u clean

1 1 0] 0] 5
2 0 1 0 12
3 1 0 0 56
H 4 0 0] 1 28

Supervised Learning in R: Regression

vtreat Treatment is Robust

Previously unseen x level: four four encodes to (0, 0, 0)
X u y prepare(treatplan, toomany, ...)
one 4 0.2331301 x_lev_x.one | x_lev x.three | x_lev x.two | u_clean
two 14 1.9331760 1 0 0 4
three 66 3.1251029 0 0 1 14
four 25 4.0332491 0 1 0 66
)) 0 25

Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!

Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

Gradient boosting
machines

Nina Zumel and John Mount
Win-Vector, LLC

Supervised Learning in R: Regression

How Gradient Boosting Works

P 1. Fit a shallow tree T; to the

/’m\ data: M; =Ty

Supervised Learning in R: Regression

How Gradient Boosting Works

P 1. Fit a shallow tree T} to the

data: M, =T

2. Fit atree T _2 to the residuals.

Find v such that Ms; = M; +~T5

IS the best fit to data

Supervised Learning in R: Regression

How Gradient Boosting Works

Next model: My = M +n+12+T, Regularization: learning rate
n € (0,1)

1.0-

0.5-

My = My + nvyTs

e Larger n: faster learning

05-

e Smaller n: less risk of overfit

-1.0-

Supervised Learning in R: Regression

How Gradient Boosting Works

100 terations: M oo me 1. Fit a shallow tree T; to the
s data
e My =T,
il 2. Fit a tree T 2 to the residuals.

o My = My +ny1s
3. Repeat (2) until stopping

condition met

Final Model:

M =M +nY T,

Supervised Learning in R: Regression

Cross-validation to Guard Against Overfit

Training and Estimated out-of-sample RMSE

100 -

RMSE

50 - estimated test RMSE

0 25 50 75
Number of Trees

Training error keeps decreasing, but test error doesn't

Supervised Learning in R: Regression

Best Practice (with xgboost())

1. Run xgb.cv() with a large number of rounds (trees).

Supervised Learning in R: Regression

Best Practice (with xgboost())

1. Run xgb.cv() with a large number of rounds (trees).
2. xgb.cv()$evaluation log: records estimated RMSE for each round.

e Find the number of trees that minimizes estimated RMSE: n;.;

Supervised Learning in R: Regression

Best Practice (with xgboost())

1. Run xgb.cv() with a large number of rounds (trees).
2. xgb.cv()$evaluation log: records estimated RMSE for each round.

e Find the number of trees that minimizes estimated RMSE: n;.;

3. Run xgboost(), setting nrounds = npy;

Supervised Learning in R: Regression

Example: Bike Rental Model

First, prepare the data

treatplan <- designTreatmentsZ(bikesJan, vars)

newvars <- treatplan$scoreFrame %>%
filter(code %in% c("clean", "lev")) %>%
use series(varName)

+ + V V

> pikesJan.treat <- prepare(treatplan, bikesJan, varRestriction = newvars)
For xgboost():

e |Input data: as.matrix(bikesjan.treat)

e Qutcome: bikesjan$cnt

Supervised Learning in R: Regression

Training a model with xgboost() / xgb.cv()

> CV <- Xgb.cv(data = as.matrix(bikesJan.treat),

+ label = bikesJan$cnt,
-+ objective = "reg:linear",
-+ nrounds = 100, nfold = 5, eta = 0.3, depth = 6)

Key inputs to xgb.cv() and xgboost()

e data: input data as matrix ; label: outcome
e objective: for regression - "reg:linear"

e nrounds: maximum number of trees to fit
e eta: learning rate

e depth: maximum depth of individual trees

e nfold (xgb.cv() only): number of folds for cross validation

Supervised Learning in R: Regression

Find the Right Number of Trees

Optimum number of trees: 78

140 -

120 -

ER Y

o

o
1

test_rmse_mean

(o]
o
1

60 -

Optimum number of trees: 78

0 25 50 75
Number of trees

> elog <- as.data.frame(cv$evaluation log)
> (nrounds <- which.min(elog$test rmse mean))
[1] 78

Supervised Learning in R: Regression

Run xgboost() for final model

> nrounds <- 78

> model <- xgboost(data = as.matrix(bikesJan.treat),
+ label = bikesJan$cnt,

+ nrounds = nrounds,

+ objective = "reg:linear",

+ eta = 0.3,

- depth = 6)

Supervised Learning in R: Regression

Predict with an xgboost() model

Prepare February data, and predict

> bikesFeb.treat <- prepare(treatplan, bikesFeb, varRestriction = newvars)

> bikesFeb$pred <- predict(model, as.matrix(bikesFeb.treat))

Model performances on Febrary Data

Model RMSE
Quasipoisson 69.3
Random forests 67.15

Gradient Boosting 54.0

Supervised Learning in R: Regression

Visualize the Results

Predictions vs. Actual Bike Rentals, Predictions and Hourly Bike
February Rentals, February

600 -

400-

400~

valuetype

=& cnt

cnt
value

-®: pred

200~
200~

0 200 400 o 1 2 3 4 5 & 7 8 9 10 11 12 13 14
pred Day

Supervised Learning in R: Regression

SUPERVISED LEARNING IN R. REGRESSION

Let's practice!

