
DataCamp Supervised	Learning	in	R:	Regression

The	intuition	behind
tree-based	methods

SUPERVISED	LEARNING	IN	R:	REGRESSION

Nina	Zumel	and	John	Mount
Win-Vector,	LLC

DataCamp Supervised	Learning	in	R:	Regression

Example:	Predict	animal	intelligence	from	Gestation	Time
and	Litter	Size

DataCamp Supervised	Learning	in	R:	Regression

Decision	Trees

Rules	of	the	form:

if	a	AND	b	AND	c	THEN	y

Non-linear	concepts

intervals
non-monotonic	relationships

non-additive	interactions

AND:	similar	to	multiplication

DataCamp Supervised	Learning	in	R:	Regression

Decision	Trees

IF	Litter	<	1.15	AND	Gestation	≥	268	→	intelligence	=	0.315
IF	Litter	IN	[1.15,	4.3)	→	intelligence	=	0.131

DataCamp Supervised	Learning	in	R:	Regression

Decision	Trees

Pro:	Trees	Have	an	Expressive
Concept	Space

Model RMSE

linear 0.1200419

tree 0.1072732

Con:	Coarse-Grained	Predictions

DataCamp Supervised	Learning	in	R:	Regression

It's	Hard	for	Trees	to	Express	Linear	Relationships

Trees	Predict	Axis-Aligned	Regions

Each	color	is	a	different	predicted
value

It's	Hard	to	Express	Lines	with
Steps

DataCamp Supervised	Learning	in	R:	Regression

Other	Issues	with	Trees
Tree	with	too	many	splits	(deep	tree):

Too	complex	-	danger	of	overfit
Tree	with	too	few	splits	(shallow	tree):

Predictions	too	coarse-grained

DataCamp Supervised	Learning	in	R:	Regression

Ensembles	of	Trees

Ensemble	Model	Fits	Animal
Intelligence	Data	Better	than
Single	Tree

Model RMSE

linear 0.1200419

tree 0.1072732

random	forest 0.0901681

Ensembles	Give	Finer-grained
Predictions	than	Single	Trees

DataCamp Supervised	Learning	in	R:	Regression

Let's	practice!

SUPERVISED	LEARNING	IN	R:	REGRESSION

DataCamp Supervised	Learning	in	R:	Regression

Random	forests

SUPERVISED	LEARNING	IN	R:	REGRESSION

Nina	Zumel	and	John	Mount
Win-Vector,	LCC

DataCamp Supervised	Learning	in	R:	Regression

Random	Forests

Multiple	diverse	decision	trees	averaged	together

Reduces	overfit
Increases	model	expressiveness
Finer	grain	predictions

DataCamp Supervised	Learning	in	R:	Regression

Building	a	Random	Forest	Model
1.	 Draw	bootstrapped	sample	from	training	data
2.	 For	each	sample	grow	a	tree

At	each	node,	pick	best	variable	to	split	on	(from	a	random
subset	of	all	variables)
Continue	until	tree	is	grown

3.	 To	score	a	datum,	evaluate	it	with	all	the	trees	and	average	the
results.

DataCamp Supervised	Learning	in	R:	Regression

Example:	Bike	Rental	Data
>	cnt	~	hr	+	holiday	+	workingday	+	
+					weathersit	+	temp	+	atemp	+	hum	+	windspeed

DataCamp Supervised	Learning	in	R:	Regression

Random	Forests	with	ranger()

	
formula,	data

num.trees	(default	500)	-	use	at	least	200

mtry	-	number	of	variables	to	try	at	each	node

default:	square	root	of	the	total	number	of	variables
respect.unordered.factors	-	recommend	set	to	"order"

"safe"	hashing	of	categorical	variables

>	model	<-	ranger(fmla,	bikesJan,	
+																	num.trees	=	500,	
+																	respect.unordered.factors	=	"order")

DataCamp Supervised	Learning	in	R:	Regression

Random	Forests	with	ranger()

Random	forest	algorithm	returns	estimates	of	out-of-sample
performance.

>	model

##	Ranger	result
##	...
##	OOB	prediction	error	(MSE):							3103.623	
##	R	squared	(OOB):																		0.7837386

DataCamp Supervised	Learning	in	R:	Regression

Predicting	with	a	ranger()	model

predict()	inputs:

model
data

Predictions	can	be	accessed	in	the	element	predictions.

>	bikesFeb$pred	<-	predict(model,	bikesFeb)$predictions

DataCamp Supervised	Learning	in	R:	Regression

Evaluating	the	model

Calculate	RMSE:

Model RMSE

Quasipoisson 69.3

Random	forests 67.15

>	bikesFeb	%>%	
+					mutate(residual	=	pred	-	cnt)	%>%
+					summarize(rmse	=	sqrt(mean(residual^2)))

##							rmse
##	1	67.15169

DataCamp Supervised	Learning	in	R:	Regression

Evaluating	the	model

DataCamp Supervised	Learning	in	R:	Regression

Let's	practice!

SUPERVISED	LEARNING	IN	R:	REGRESSION

DataCamp Supervised	Learning	in	R:	Regression

One-Hot-Encoding
Categorical	Variables

SUPERVISED	LEARNING	IN	R:	REGRESSION

Nina	Zumel	and	John	Mount
Win-Vector,	LLC

DataCamp Supervised	Learning	in	R:	Regression

Why	Convert	Categoricals	Manually?
Most	R	functions	manage	the	conversion	for	you

model.matrix()

xgboost()	does	not

Must	convert	categorical	variables	to	numeric	representation
Conversion	to	indicators:	one-hot	encoding

DataCamp Supervised	Learning	in	R:	Regression

One-hot-encoding	and	data	cleaning	with	vtreat

Basic	idea:

designTreatmentsZ()	to	design	a	treatment	plan	from	the	training	data,

then
prepare()	to	created	"clean"	data

all	numerical
no	missing	values
use	prepare()	with	treatment	plan	for	all	future	data

DataCamp Supervised	Learning	in	R:	Regression

A	Small	vtreat	Example

Training	Data

x u y

one 44 0.4855671

two 24 1.3683726

three 66 2.0352837

two 22 1.6396267

Test	Data

x u y

one 5 2.6488148

three 12 1.5012938

one 56 0.1993731

two 28 1.2778516

DataCamp Supervised	Learning	in	R:	Regression

Create	the	Treatment	Plan

Inputs	to	designTreatmentsZ()

dframe:	training	data

varlist:	list	of	input	variable	names

set	verbose	=	FALSE	to	suppress	progress	messages

>	vars	<-	c("x",	"u")
>	treatplan	<-	designTreatmentsZ(dframe,	varslist,	verbose	=	FALSE)

DataCamp Supervised	Learning	in	R:	Regression

Get	the	New	Variables

The	scoreFrame	describes	the	variable	mapping	and	types

Get	the	names	of	the	new	lev	and	clean	variables

>	(scoreFrame	<-	treatplan$scoreFrame	%>%	
+					select(varName,	origName,	code))

##									varName	origName		code
##	1			x_lev_x.one								x			lev
##	2	x_lev_x.three								x			lev
##	3			x_lev_x.two								x			lev
##	4								x_catP								x		catP
##	5							u_clean								u	clean

>	(newvars	<-	scoreFrame	%>%	
+					filter(code	%in%	c("clean",	"lev"))	%>%
+					use_series(varName))
[1]	"x_lev_x.one"			"x_lev_x.three"	"x_lev_x.two"			"u_clean"

DataCamp Supervised	Learning	in	R:	Regression

Prepare	the	Training	Data	for	Modeling

Inputs	to	prepare():

treatmentplan:	treatment	plan

dframe:	data	frame

varRestriction:	list	of	variables	to	prepare	(optional)

default:	prepare	all	variables

>	training.treat	<-	prepare(treatmentplan,	dframe,	varRestriction	=	newvars)

DataCamp Supervised	Learning	in	R:	Regression

Before	and	After	Data	Treatment

Training	Data

x u y

one 44 0.4855671

two 24 1.3683726

three 66 2.0352837

two 22 1.6396267

Treated	Training	Data

x_lev_x.one x_lev_x.three x_lev_x.two u_clean

1 0 0 44

0 0 1 24

0 1 0 66

0 0 1 22

DataCamp Supervised	Learning	in	R:	Regression

Prepare	the	Test	Data	Before	Model	Application
>	(test.treat	<-	prepare(treatplan,	test,	varRestriction	=	newvars))

##			x_lev_x.one	x_lev_x.three	x_lev_x.two	u_clean
##	1											1													0											0							5
##	2											0													1											0						12
##	3											1													0											0						56
##	4											0													0											1						28

DataCamp Supervised	Learning	in	R:	Regression

vtreat	Treatment	is	Robust

Previously	unseen	x	level:	four

x u y

one 4 0.2331301

two 14 1.9331760

three 66 3.1251029

four 25 4.0332491

four	encodes	to	(0,	0,	0)

x_lev_x.one x_lev_x.three x_lev_x.two u_clean

1 0 0 4

0 0 1 14

0 1 0 66

0 0 0 25

prepare(treatplan,	toomany,	...)

DataCamp Supervised	Learning	in	R:	Regression

Let's	practice!

SUPERVISED	LEARNING	IN	R:	REGRESSION

DataCamp Supervised	Learning	in	R:	Regression

Gradient	boosting
machines

SUPERVISED	LEARNING	IN	R:	REGRESSION

Nina	Zumel	and	John	Mount
Win-Vector,	LLC

DataCamp Supervised	Learning	in	R:	Regression

How	Gradient	Boosting	Works
1.	 Fit	a	shallow	tree	T 	to	the

data:	M = T

1

1 1

DataCamp Supervised	Learning	in	R:	Regression

How	Gradient	Boosting	Works
1.	 Fit	a	shallow	tree	T 	to	the

data:	M = T

2.	 Fit	a	tree	T_2	to	the	residuals.
Find	γ	such	that	M = M + γT

is	the	best	fit	to	data

1

1 1

2 1 2

DataCamp Supervised	Learning	in	R:	Regression

How	Gradient	Boosting	Works

Regularization:	learning	rate	
η ∈ (0, 1)

M = M + ηγT

Larger	η:	faster	learning
Smaller	η:	less	risk	of	overfit

2 1 2

DataCamp Supervised	Learning	in	R:	Regression

How	Gradient	Boosting	Works
1.	 Fit	a	shallow	tree	T 	to	the

data
M = T

2.	 Fit	a	tree	T_2	to	the	residuals.
M = M + ηγ T

3.	 Repeat	(2)	until	stopping
condition	met

Final	Model:

M = M + η γ T

1

1 1

2 1 2 2

1 ∑ i i

DataCamp Supervised	Learning	in	R:	Regression

Cross-validation	to	Guard	Against	Overfit

Training	error	keeps	decreasing,	but	test	error	doesn't

DataCamp Supervised	Learning	in	R:	Regression

Best	Practice	(with	xgboost())
1.	 Run	xgb.cv()	with	a	large	number	of	rounds	(trees).

DataCamp Supervised	Learning	in	R:	Regression

Best	Practice	(with	xgboost())
1.	 Run	xgb.cv()	with	a	large	number	of	rounds	(trees).

2.	 xgb.cv()$evaluation_log:	records	estimated	RMSE	for	each	round.

Find	the	number	of	trees	that	minimizes	estimated	RMSE:	nbest

DataCamp Supervised	Learning	in	R:	Regression

Best	Practice	(with	xgboost())
1.	 Run	xgb.cv()	with	a	large	number	of	rounds	(trees).

2.	 xgb.cv()$evaluation_log:	records	estimated	RMSE	for	each	round.

Find	the	number	of	trees	that	minimizes	estimated	RMSE:	n
3.	 Run	xgboost(),	setting	nrounds	=	n

best

best

DataCamp Supervised	Learning	in	R:	Regression

Example:	Bike	Rental	Model

First,	prepare	the	data

For	xgboost():

Input	data:	as.matrix(bikesJan.treat)

Outcome:	bikesJan$cnt

>	treatplan	<-	designTreatmentsZ(bikesJan,	vars)
>	newvars	<-	treatplan$scoreFrame	%>%
+					filter(code	%in%	c("clean",	"lev"))	%>%
+					use_series(varName)

>	bikesJan.treat	<-	prepare(treatplan,	bikesJan,	varRestriction	=	newvars)

DataCamp Supervised	Learning	in	R:	Regression

Training	a	model	with	xgboost()	/	xgb.cv()

Key	inputs	to	xgb.cv()	and	xgboost()

data:	input	data	as	matrix	;	label:	outcome

objective:	for	regression	-	"reg:linear"

nrounds:	maximum	number	of	trees	to	fit

eta:	learning	rate

depth:	maximum	depth	of	individual	trees

nfold	(xgb.cv()	only):	number	of	folds	for	cross	validation

>	cv	<-	xgb.cv(data	=	as.matrix(bikesJan.treat),	
+														label	=	bikesJan$cnt,
+														objective	=	"reg:linear",
+														nrounds	=	100,	nfold	=	5,	eta	=	0.3,	depth	=	6)

DataCamp Supervised	Learning	in	R:	Regression

Find	the	Right	Number	of	Trees

>	elog	<-	as.data.frame(cv$evaluation_log)
>	(nrounds	<-	which.min(elog$test_rmse_mean))
[1]	78

DataCamp Supervised	Learning	in	R:	Regression

Run	xgboost()	for	final	model
>	nrounds	<-	78

>	model	<-	xgboost(data	=	as.matrix(bikesJan.treat),	
+																		label	=	bikesJan$cnt,
+																		nrounds	=	nrounds,
+																		objective	=	"reg:linear",
+																		eta	=	0.3,
+																		depth	=	6)

DataCamp Supervised	Learning	in	R:	Regression

Predict	with	an	xgboost()	model

Prepare	February	data,	and	predict

Model	performances	on	Febrary	Data

Model RMSE

Quasipoisson 69.3

Random	forests 67.15

Gradient	Boosting 54.0

>	bikesFeb.treat	<-	prepare(treatplan,	bikesFeb,	varRestriction	=	newvars)

>	bikesFeb$pred	<-	predict(model,	as.matrix(bikesFeb.treat))

DataCamp Supervised	Learning	in	R:	Regression

Visualize	the	Results

Predictions	vs.	Actual	Bike	Rentals,
February

Predictions	and	Hourly	Bike
Rentals,	February

DataCamp Supervised	Learning	in	R:	Regression

Let's	practice!

SUPERVISED	LEARNING	IN	R:	REGRESSION

