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Example:	Effect	of	Diet	on	Weight	Loss

Diet Age BMI WtLoss24

Med 59 30.67 -6.7

Low-Carb 48 29.59 8.4

Low-Fat 52 32.9 6.3

Med 53 28.92 8.3

Low-Fat 47 30.20 6.3

>	WtLoss24	~	Diet	+	Age	+	BMI
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model.matrix()

	
All	numerical	values
Converts	categorical	variable	with	N	levels	into	N	-	1	indicator
variables

>	model.matrix(WtLoss24	~	Diet	+	Age	+	BMI,	data	=	diet)
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Indicator	Variables	to	Represent	Categories

Original	Data

Diet Age ...

Med 59 ...

Low-Carb 48 ...

Low-Fat 52 ...

Med 53 ...

Low-Fat 47 ...

Model	Matrix

(Intercept) DietLow-
Fat

DietMed ...

1 0 1 ...

1 0 0 ...

1 1 0 ...

1 0 1 ...

1 1 0 ...

reference	level:	"Low-Carb"
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Interpreting	the	Indicator	Variables

Linear	Model:

>	lm(WtLoss24	~	Diet	+	Age	+	BMI,	data	=	diet))

##	Coefficients:
##							(Intercept)								DietLow-Fat					DietMed		
##										-1.37149											-2.32130				-0.97883		
##															Age																BMI		
##											0.12648												0.01262
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Issues	with	one-hot-encoding
Too	many	levels	can	be	a	problem

Example:	ZIP	code	(about	40,000	codes)
Don't	hash	with	geometric	methods!
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Let's	practice!
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Interactions
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Additive	relationships

Example	of	an	additive	relationship:

	
Change	in	height	is	the	sum	of	the	effects	of	bacteria	and	sunlight

Change	in	sunlight	causes	same	change	in	height,	independent	of
bacteria
Change	in	bacteria	causes	same	change	in	height,	independent	of
sunlight

>	plant_height	~	bacteria	+	sun
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What	is	an	Interaction?

The	simultaneous	influence	of	two	variables	on	the	outcome	is	not
additive.

	
Change	in	height	is	more	(or	less)	than	the	sum	of	the	effects	due	to
sun/bacteria
At	higher	levels	of	sunlight,	1	unit	change	in	bacteria	causes	more
change	in	height

>	plant_height	~	bacteria	+	sun	+	bacteria:sun
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What	is	an	Interaction?

The	simultaneous	influence	of	two	variables	on	the	outcome	is	not
additive.

	
sun:	categorical	{"sun",	"shade"}

In	sun,	1	unit	change	in	bacteria	causes	m	units	change	in	height
In	shade,	1	unit	change	in	bacteria	causes	n	units	change	in	height

Like	two	separate	models:	one	for	sun,	one	for	shade.

>	plant_height	~	bacteria	+	sun	+	bacteria:sun
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Example	of	no	Interaction:	Soybean	Yield
>	yield	~	Stress	+	SO2	+	O3
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Example	of	an	Interaction:	Alcohol	Metabolism
>	Metabol	~	Gastric	+	Sex
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Expressing	Interactions	in	Formulae

Interaction	-	Colon	(:)

Main	effects	and	interaction	-	Asterisk	(*)

Expressing	the	product	of	two	variables	-	I

same	as	y ∝ ab

>	y	~	a:b

>	y	~	a*b
#	Both	mean	the	same
>	y	~	a	+	b	+	a:b

>	y	~	I(a*b)
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Finding	the	Correct	Interaction	Pattern
Formula RMSE	(cross	validation)

Metabol	~	Gastric	+	Sex 1.46

Metabol	~	Gastric	*	Sex 1.48

Metabol	~	Gastric	+	Gastric:Sex 1.39



DataCamp Supervised	Learning	in	R:	Regression

Let's	practice!

SUPERVISED	LEARNING	IN	R:	REGRESSION



DataCamp Supervised	Learning	in	R:	Regression

Transforming	the
response	before

modeling
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The	Log	Transform	for	Monetary	Data

Monetary	values:	lognormally	distributed
Long	tail,	wide	dynamic	range	(60-700K)
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Lognormal	Distributions

mean	>	median	(~	50K	vs	39K)
Predicting	the	mean	will	overpredict	typical	values
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Back	to	the	Normal	Distribution

For	a	Normal	Distribution:

mean	=	median	(here:	4.53	vs
4.59)
more	reasonable	dynamic	range
(1.8	-	5.8)
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The	Procedure
1.	 Log	the	outcome	and	fit	a	model

	>	model	<-	lm(log(y)	~	x,	data	=	train)
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The	Procedure
1.	 Log	the	outcome	and	fit	a	model

2.	 Make	the	predictions	in	log	space
	>	model	<-	lm(log(y)	~	x,	data	=	train)

	>	logpred	<-	predict(model,	data	=	test)
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The	Procedure
1.	 Log	the	outcome	and	fit	a	model

2.	 Make	the	predictions	in	log	space

3.	 Transform	the	predictions	to	outcome	space

	>	model	<-	lm(log(y)	~	x,	data	=	train)

	>	logpred	<-	predict(model,	data	=	test)

	>	pred	<-	exp(logpred)
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Predicting	Log-transformed	Outcomes:	Multiplicative
Error
log(a) + log(b) = log(ab)

log(a) − log(b) = log(a/b)

Multiplicative	error:	pred/y

Relative	error:	(pred − y)/y = − 1

Reducing	multiplicative	error	reduces	relative	error.

y
pred
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Root	Mean	Squared	Relative	Error

RMS-relative	error	=	

Predicting	log-outcome	reduces	RMS-relative	error
But	the	model	will	often	have	larger	RMSE

√( )
y

pred−y 2
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Example:	Model	Income	Directly
	

AFQT:	Score	on	proficiency	test	25	years	before	survey

Educ:	Years	of	education	to	time	of	survey

Income:	Income	at	time	of	survey

>	modIncome	<-	lm(Income	~	AFQT	+	Educ,	data	=	train)
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Model	Performance

RMSE RMS-relative	error

36,819.39 3.295189

>	test	%>%	
+					mutate(pred	=	predict(modIncome,	newdata	=	test),
+												err	=	pred	-	Income)	%>%
+					summarize(rmse	=	sqrt(mean(err^2)),
+															rms.relerr	=	sqrt(mean((err/Income)^2)))
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Model	log(Income)

>	modLogIncome	<-	lm(log(Income)	~	AFQT	+	Educ,	data	=	train)



DataCamp Supervised	Learning	in	R:	Regression

Model	Performance

RMSE RMS-relative	error

38,906.61 2.276865

>	test	%>%	
+					mutate(predlog	=	predict(modLogIncome,	newdata	=	test),	
+												pred	=	exp(predlog),	
+												err	=	pred	-	Income)	%>%
+					summarize(rmse	=	sqrt(mean(err^2)),
+															rms.relerr	=	sqrt(mean((err/Income)^2)))
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Compare	Errors

log(Income)	model:	smaller	RMS-relative	error,	larger	RMSE

Model RMSE RMS-relative	error

On	Income 36,819.39 3.295189

On	log(Income) 38,906.61 2.276865
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Let's	practice!
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Transforming	inputs
before	modeling
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Why	To	Transform	Input	Variables
Domain	knowledge/synthetic	variables

Intelligence	~	mass.brain/mass.body2/3
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Why	To	Transform	Input	Variables
Domain	knowledge/synthetic	variables

Intelligence	~	mass.brain/mass.body

Pragmatic	reasons
Log	transform	to	reduce	dynamic	range
Log	transform	because	meaningful	changes	in	variable	are
multiplicative

2/3
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Why	To	Transform	Input	Variables
Domain	knowledge/synthetic	variables

Intelligence	~	mass.brain/mass.body

Pragmatic	reasons
Log	transform	to	reduce	dynamic	range
Log	transform	because	meaningful	changes	in	variable	are
multiplicative
y	approximately	linear	in	f(x)	rather	than	in	x

2/3
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Example:	Predicting	Anxiety
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Transforming	the	hassles	variable
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Different	possible	fits

Which	is	best?

anx	~	I(hassles^2)

anx	~	I(hassles^3)

anx	~	I(hassles^2)	+	I(hassles^3)

anx	~	exp(hassles)

...

I():	treat	an	expression	literally	(not	as	an	interaction)
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Compare	different	models

Linear,	Quadratic,	and	Cubic	models

>	mod_lin	<-	lm(anx	~	hassles,	hassleframe)
>	summary(mod_lin)$r.squared
[1]	0.5334847

>	mod_quad	<-	lm(anx	~	I(hassles^2),	hassleframe)
>	summary(mod_quad)$r.squared
[1]	0.6241029

>	mod_tritic	<-	lm(anx	~	I(hassles^3),	hassleframe)
>	summary(mod_tritic)$r.squared
[1]	0.6474421
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Compare	different	models

Use	cross-validation	to	evaluate	the	models

Model RMSE

Linear	(hassles) 7.69

Quadratic	(hassles ) 6.89

Cubic	(hassles ) 6.70

2

3
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Let's	practice!
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