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Example: Effect of Diet on Weight Loss

> WtLoss24 ~ Diet + Age + BMI

Diet Age BMI WtLoss24

Med 59 30.67 -6.7
Low-Carb 48 29.59 8.4
Low-Fat 52 32.9 6.3

Med 53 28.92 8.3
Low-Fat 47 30.20 6.3
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model.matrix()

> model.matrix(WtLoss24 ~ Diet + Age + BMI, data = diet)

e All numerical values
e Converts categorical variable with N levels into N - 1 indicator

variables
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Indicator Variables to Represent Categories

Original Data

Model Matrix

Diet Age
Med 59
Low-Carb 48
Low-Fat 52
Med 53
Low-Fat 47

(Intercept) | DietLow- | DietMed
Fat
1 0 1
1 0 0
1 1 0
1 0 1
1 1 0

e reference level: "Low-Carb"
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Interpreting the Indicator Variables

Linear Model:

WtLoss24 = Bo+BpietLowFat® DietLowFat+BDietMedT DietMed+BAgeT Age+BBMITBMI

> Ilm(WtLoss24 ~ Diet + Age + BMI, data = diet))

## Coefficients:

H#Hit (Intercept) DietLow-Fat DietMed
## -1.37149 -2.32130 -0.97883
## Age BMI

## 0.12648 0.01262
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Issues with one-hot-encoding

e Too many levels can be a problem
= Example: ZIP code (about 40,000 codes)

e Don't hash with geometric methods!
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Additive relationships

Example of an additive relationship:

> plant _height ~ bacteria + sun

e Change in height is the sum of the effects of bacteria and sunlight

= Change in sunlight causes same change in height, independent of
bacteria
= Change in bacteria causes same change in height, independent of

sunlight
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What Is an Interaction?

The simultaneous influence of two variables on the outcome is not
additive.

> plant_height ~ bacteria + sun + bacteria:sun
e Change in height is more (or less) than the sum of the effects due to
sun/bacteria
e At higher levels of sunlight, 1 unit change in bacteria causes more

change in height



Supervised Learning in R: Regression

What Is an Interaction?

The simultaneous influence of two variables on the outcome is not
additive.

> plant height ~ bacteria + sun + bacteria:sun

e sun: categorical {"sun", "shade"}

e In sun, 1 unit change in bacteria causes m units change in height

e In shade, 1 unit change in bacteria causes n units change in height

Like two separate models: one for sun, one for shade.
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Example of no Interaction: Soybean Yield

> yield ~ Stress + S02 + 03

03
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Example of an Interaction: Alcohol Metabolism

> Metabol ~ Gastric + Sex

Metabol
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Expressing Interactions in Formulae

e |Interaction - Colon (:)

>y ~ a:b

e Main effects and interaction - Asterisk (*)

>y ~ a*b
# Both mean the same
>y ~a+b+ a:b

e Expressing the product of two variables - |

>y ~ I(a*b)

cCArMA NC A0~ ~h
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Finding the Correct Interaction Pattern

Formula RMSE (cross validation)
Metabol ~ Gastric + Sex 1.46
Metabol ~ Gastric * Sex 1.48

Metabol ~ Gastric + Gastric:Sex 1.39
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The Log Transform for Monetary Data

Distribution of Income Data
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e Monetary values: lognormally distributed

e Long tail, wide dynamic range (60-700K)



Lognormal Distributions

Distribution of Income Data
Mean: 49,894 Median: 39,000
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metric | meanincome medlncome

e mean > median (~ 50K vs 39K)

e Predicting the mean will overpredict typical values
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Back to the Normal Distribution

1.0-

density
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Distribution of log10(Income Data)

Mean: 4.53 Median: 4.59

3 4
log10(Income)

metric | meanincome

medincome

For a Normal Distribution:

e mean = median (here: 4.53 vs
4.59)
e more reasonable dynamic range

(1.8 - 5.8)
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> model <- Im(log(y) ~ x, data = train)
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The Procedure

1. Log the outcome and fit a model

> model <- Im(log(y) ~ x, data = train)

2. Make the predictions in log space

> logpred <- predict(model, data = test)

3. Transform the predictions to outcome space

> pred <- exp(logpred)
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Predicting Log-transformed Outcomes: Multiplicative

Error
log(a) + log(b) = log(ab)

log(a) — log(b) = log(a/b)

e Multiplicative error: pred/y

* Relative error: (pred —y)/y = 2 — 1

Reducing multiplicative error reduces relative error.
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Root Mean Squared Relative Error

[

i : . red—y\2
RMS-relative error = \/(p )

e Predicting log-outcome reduces RMS-relative error

e But the model will often have larger RMSE
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Example: Model Income Directly

> modIncome <- Um(Income ~ AFQT + Educ, data = train)

e AFQT: Score on proficiency test 25 years before survey
e Educ: Years of education to time of survey

e Income: Income at time of survey
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Model Performance

test %%
mutate(pred = predict(modIncome, newdata = test),
err = pred - Income) %>%
summarize(rmse = sqgrt(mean(err™2)),
rms.relerr = sqrt(mean((err/Income)”2)))

+ + + + V

RMSE RMS-relative error

36,819.39 3.295189
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Model log(Income)

> modLogIncome <- lm(log(Income) ~ AFQT + Educ, data = train)
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Model Performance

test %%
mutate(predlog = predict(modLogIncome, newdata = test),
pred = exp(predlog),
err = pred - Income) %>%
summarize(rmse = sqrt(mean(err™2)),
rms.relerr = sqrt(mean((err/Income)”2)))

+ 4+ + + + V

RMSE RMS-relative error

38,906.61 2.276865
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Compare Errors

log(Income) model: smaller RMS-relative error, larger RMSE

Model RMSE RMS-relative error

On Income 36,819.39 3.295189

On log(Income) 38,906.01 2.276865
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Why To Transform Input Variables

e Domain knowledge/synthetic variables
» Intelligence ~ mass.brain/mass.body?/3
e Pragmatic reasons
= Log transform to reduce dynamic range
= Log transform because meaningful changes in variable are
multiplicative

» y approximately linear in f(z) rather than in x
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Example: Predicting Anxiety

Anxiety as a function of hassles
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Transforming the hassles variable

Anxiety vs hassles
Green: anx ~ hassles; Orange: anx ~ I(hassles*2); Purple: anx ~ I(hassles”3)
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Different possible fits

Which is best?

e anx ~ l(hassles™?2)
e anx ~ l(hassles™3)
e anx ~ l(hassles™2) + l(hassles”™ 3)

e anx ~ exp(hassles)

I(): treat an expression literally (not as an interaction)
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Compare different models

Linear, Quadratic, and Cubic models

> mod lin <- lm(anx ~ hassles, hassleframe)
> summary(mod lin)$r.squared
[1] 0.5334847

> mod quad <- lm(anx ~ I(hassles”2), hassleframe)
> summary(mod quad)$r.squared
[1] 0.6241029

> mod tritic <- lm(anx ~ I(hassles”3), hassleframe)
> summary(mod tritic)$r.squared
[1] 0.6474421
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Compare different models

Use cross-validation to evaluate the models

Model RMSE
Linear (hassles) 7.69
Quadratic (hassles?) 6.89

Cubic (hassles®) 6.70
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