

SUPERVISED LEARNING IN R: REGRESSION

Categorical inputs

Nina Zumel and John Mount Win-Vector, LLC

Example: Effect of Diet on Weight Loss

> WtLoss24 ~ Diet + Age + BMI

Diet	Age	BMI	WtLoss24
Med	59	30.67	-6.7
Low-Carb	48	29.59	8.4
Low-Fat	52	32.9	6.3
Med	53	28.92	8.3
Low-Fat	47	30.20	6.3

model.matrix()

- > model.matrix(WtLoss24 ~ Diet + Age + BMI, data = diet)
 - All numerical values
 - Converts categorical variable with N levels into N 1 indicator variables

Indicator Variables to Represent Categories

Original Data

Diet	Age	
Med	59	
Low-Carb	48	
Low-Fat	52	
Med	53	
Low-Fat	47	

Model Matrix

(Intercept)	DietLow-	DietMed
	Fat	
1	0	1
1	0	0
1	1	0
1	0	1
1	1	0

• reference level: "Low-Carb"

Interpreting the Indicator Variables

Linear Model:

 $WtLoss24 = \beta_0 + \beta_{DietLowFat} x_{DietLowFat} + \beta_{DietMed} x_{DietMed} + \beta_{Age} x_{Age} + \beta_{BMI} x_{BMI}$

>	lm(WtLoss24 ~ Diet	+ Age	+ BMI,	data =	diet))
##	Coefficients:				
##	(Intercept)		DietL	ow-Fat	DietMed
##	-1.37149		-2	.32130	-0.97883
##	Age			BMI	
##	0.12648		0	.01262	

Issues with one-hot-encoding

- Too many levels can be a problem
 - Example: ZIP code (about 40,000 codes)
- Don't hash with geometric methods!

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Interactions

Nina Zumel and John Mount Win-Vector, LLC

Additive relationships

Example of an additive relationship:

- > plant_height ~ bacteria + sun
 - Change in height is the sum of the effects of bacteria and sunlight
 - Change in sunlight causes same change in height, independent of bacteria
 - Change in bacteria causes same change in height, independent of sunlight

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

> plant height ~ bacteria + sun + bacteria:sun

- Change in height is more (or less) than the sum of the effects due to sun/bacteria
- At higher levels of sunlight, 1 unit change in bacteria causes more change in height

What is an Interaction?

The simultaneous influence of two variables on the outcome is not additive.

> plant height ~ bacteria + sun + bacteria:sun

- sun: categorical {"sun", "shade"}
- In sun, 1 unit change in bacteria causes *m* units change in height
- In shade, 1 unit change in bacteria causes *n* units change in height

Like two separate models: one for sun, one for shade.

Example of no Interaction: Soybean Yield

> yield ~ Stress + S02 + 03

Example of an Interaction: Alcohol Metabolism

> Metabol ~ Gastric + Sex

Expressing Interactions in Formulae

Interaction - Colon (:)

> y ~ a:b

Main effects and interaction - Asterisk (*)

> y ~ a*b # Both mean the same > y ~ a + b + a:b

Expressing the product of two variables - I

> y ~ I(a*b)

 $camp a c u \sim ab$

Finding the Correct Interaction Pattern

Formula	RMSE (cross validation)
Metabol ~ Gastric + Sex	1.46
Metabol ~ Gastric * Sex	1.48
Metabol ~ Gastric + Gastric:Sex	1.39

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Transforming the response before modeling

Nina Zumel and John Mount Win-Vector, LLC

The Log Transform for Monetary Data

- Monetary values: lognormally distributed
- Long tail, wide dynamic range (60-700K)

Lognormal Distributions

- mean > median (\sim 50K vs 39K)
- Predicting the mean will overpredict typical values

Back to the Normal Distribution

For a Normal Distribution:

• mean = median (here: 4.53 vs

4.59)

- more reasonable dynamic range
 - (1.8 5.8)

The Procedure

1. Log the outcome and fit a model

> model <- lm(log(y) ~ x, data = train)</pre>

The Procedure

- 1. Log the outcome and fit a model
 - > model <- lm(log(y) ~ x, data = train)</pre>
- 2. Make the predictions in log space
 - > logpred <- predict(model, data = test)</pre>

The Procedure

- 1. Log the outcome and fit a model
 - > model <- lm(log(y) ~ x, data = train)</pre>
- 2. Make the predictions in log space
 - > logpred <- predict(model, data = test)</pre>
- 3. Transform the predictions to outcome space

> pred <- exp(logpred)</pre>

Predicting Log-transformed Outcomes: Multiplicative Error

log(a) + log(b) = log(ab)

log(a) - log(b) = log(a/b)

- Multiplicative error: pred/y
- Relative error: $(pred y)/y = \frac{pred}{y} 1$

Reducing multiplicative error reduces relative error.

Root Mean Squared Relative Error

RMS-relative error = $\sqrt{(\frac{pred-y}{y})^2}$

- Predicting log-outcome reduces RMS-relative error
- But the model will often have larger RMSE

Example: Model Income Directly

> modIncome <- lm(Income ~ AFQT + Educ, data = train)</pre>

- AFQT: Score on proficiency test 25 years before survey
- Educ: Years of education to time of survey
- Income: Income at time of survey

36,819.39

Model Performance

> test %>%			
+ mutate(pre	<pre>+ mutate(pred = predict(modIncome, newdata = test),</pre>		
+ err = pred - Income) %>%			
<pre>+ summarize(rmse = sqrt(mean(err^2)),</pre>			
+ rms.relerr = sqrt(mean((err/Income)^2)))			
DMCE			
RMSE	RMS-relative error		

3.295189

Model log(Income)

> modLogIncome <- lm(log(Income) ~ AFQT + Educ, data = train)</pre>

Model Performance

Compare Errors

log(Income) model: smaller RMS-relative error, larger RMSE

Model	RMSE	RMS-relative error
On Income	36,819.39	3.295189
On log(Income)	38,906.61	2.276865

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!

SUPERVISED LEARNING IN R: REGRESSION

Transforming inputs before modeling

Nina Zumel and John Mount Win-Vector LLC

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence ~ $mass.brain/mass.body^{2/3}$

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence ~ $mass.brain/mass.body^{2/3}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative

Why To Transform Input Variables

- Domain knowledge/synthetic variables
 - Intelligence ~ $mass.brain/mass.body^{2/3}$
- Pragmatic reasons
 - Log transform to reduce dynamic range
 - Log transform because meaningful changes in variable are multiplicative
 - y approximately linear in f(x) rather than in x

Example: Predicting Anxiety

Anxiety as a function of hassles

Transforming the hassles variable

Anxiety vs hassles

Green: anx ~ hassles; Orange: anx ~ I(hassles^2); Purple: anx ~ I(hassles^3)

Different possible fits

Which is best?

- anx ~ I(hassles^2)
- anx ~ I(hassles^3)
- anx ~ I(hassles^2) + I(hassles^3)
- anx ~ exp(hassles)
- ...

I(): treat an expression literally (not as an interaction)

Compare different models

Linear, Quadratic, and Cubic models

```
> mod_lin <- lm(anx ~ hassles, hassleframe)</pre>
> summary(mod lin)$r.squared
[1] 0.5334847
> mod quad <- lm(anx ~ I(hassles^2), hassleframe)</pre>
> summary(mod_quad)$r.squared
[1] 0.6241029
> mod tritic <- lm(anx ~ I(hassles^3), hassleframe)</pre>
> summary(mod tritic)$r.squared
[1] 0.6474421
```


Compare different models

Use cross-validation to evaluate the models

Model	RMSE
Linear (hassles)	7.69
Quadratic (hassles ²)	6.89
Cubic (<i>hassles</i> ³)	6.70

SUPERVISED LEARNING IN R: REGRESSION

Let's practice!