

Evaluating a model graphically

Nina Zumel and John Mount Win-Vector LLC

Plotting Ground Truth vs. Predictions

A poorly fitting model

Servo response time vs. linear model prediction

- x = y line runs through center of points
- "line of perfect prediction"

- Points are all on one side of x = *y* line
- Systematic errors

The Residual Plot

A well fitting model

Residuals vs. linear model prediction

A poorly fitting model

Residuals vs. linear model prediction

- Residual: actual outcome prediction
- Good fit: no systematic errors

• Systematic errors

The Gain Curve

Measures how well model sorts the outcome

• **x-axis**: houses in model-sorted

order (decreasing)

• y-axis: fraction of total

accumulated home sales

Wizard curve: perfect model

Reading the Gain Curve

GainCurvePlot(houseprices, "prediction", "price", "Home price model")

Let's practice!

Root Mean Squared Error (RMSE)

Nina Zumel and John Mount Win-Vector LLC

What is Root Mean Squared Error (RMSE)?

$$RMSE = \sqrt{(pred - y)^2}$$

where

- pred y: the error, or residuals vector
- $\overline{(pred y)^2}$: mean value of $(pred y)^2$

RMSE of the Home Sales Price Model

Calculate error > err <- houseprices\$prediction - houseprices\$price</pre>

- price: column of actual sale prices (in thousands)
- prediction: column of predicted sale prices (in thousands)

RMSE of the Home Sales Price Model

Calculate error > err <- houseprices\$prediction - houseprices\$price</pre>

Square the error vector

> err2 <- err^2

RMSE of the Home Sales Price Model

```
# Calculate error
> err <- houseprices$prediction - houseprices$price</pre>
# Square the error vector
> err2 <- err^2
# Take the mean, and sqrt it
> (rmse <- sqrt(mean(err2)))</pre>
[1] 58.33908
```

• $RMSE \approx 58.3$

Is the RMSE Large or Small?

Take the mean, and sqrt it > (rmse <- sqrt(mean(err2)))</pre> [1] 58.33908

The standard deviation of the outcome > (sdtemp <- sd(houseprices\$price))</pre> [1] 135.2694

- $RMSE \approx 58.3$
- $sd(price) \approx 135$

Let's practice!

R-Squared (R^2)

Nina Zumel and John Mount Win-Vector LLC

What is R^2 ?

A measure of how well the model fits or explains the data

- A value between 0-1
 - near 1: model fits well
 - near 0: no better than guessing the average value

Calculating R^2

 R^2 is the variance explained by the model.

$$R^2 = 1 - rac{RSS}{SS_{Tot}}$$

where

- $RSS = \sum (y prediction)^2$
 - Residual sum of squares (variance from model)
- $SS_{Tot} = \sum (y \overline{y})^2$
 - Total sum of squares (variance of data)

Calculate R^2 of the House Price Model: RSS

- Calculate error
- > err <- houseprices\$prediction houseprices\$price</pre>
 - Square it and take the sum

> rss <- sum(err^2)</pre>

- price: column of actual sale prices (in thousands)
- pred: column of predicted sale prices (in thousands)
- $RSS \approx 136138$

Calculate R^2 of the House Price Model: SS_{Tot}

- Take the difference of prices from the mean price
- > toterr <- houseprices\$price mean(houseprices\$price)</pre>
 - Square it and take the sum
- > sstot <- sum(toterr^2)</pre>
 - $RSS \approx 136138$
 - $SS_{Tot} \approx 713615$

Calculate R^2 of the House Price Model

- > (r_squared <- 1 (rss/sstot))</pre> [1] 0.8092278
 - $RSS \approx 136138$
 - $SS_{Tot} \approx 713615$
 - $R^2 \approx 0.809$

Reading R^2 from the Model

For Im() models:

• From summary():

```
> summary(hmodel)
## ...
## Residual standard error: 60.66 on 37 degrees of freedom
## Multiple R-squared: 0.8092, Adjusted R-squared: 0.7989
## F-statistic: 78.47 on 2 and 37 DF, p-value: 4.893e-14
> summary(hmodel)$r.squared
```

- [1] 0.8092278
 - From glance():

> glance(hmodel)\$r.squared
[1] 0.8092278

Correlation and R^2

> rho <- cor(houseprices\$prediction, houseprices\$price)</pre> [1] 0.8995709

 $> rho^2$ [1] 0.8092278

• $\rho = cor(prediction, price) = 0.8995709$

•
$$\rho^2 = 0.8092278 = R^2$$

- True for models that minimize squared error:
 - Linear regression
 - GAM regression
 - Tree-based algorithms that minimize squared error
- True for training data: NOT true for future application data

Let's practice!

Properly Training a Model

Nina Zumel and John Mount Win-Vector, LLC

Models can perform much better on training than they do on future data.

• Training R^2 : 0.9; Test R^2 : 0.15 -- **Overfit**

Test/Train Split

Recommended method when data is plentiful

Example: Model Female Unemployment

• Train on 66 rows, test on 30 rows

Model Performance: Train vs. Test

- Training: RMSE 0.71, R^2 0.8
- Test: RMSE 0.93, *R*² 0.75

Preferred when data is not large enough to split off a test set

Create a cross-validation plan

- > library(vtreat)
- > splitPlan <- kWayCrossValidation(nRows, nSplits, NULL, NULL)</pre>
 - nRows: number of rows in the training data
 - nSplits: number folds (partitions) in the cross-validation
 - e.g, nfolds = 3 for 3-way cross-validation
 - remaining 2 arguments not needed here

Supervised Learning in R: Regression

Create a cross-validation plan

```
> library(vtreat)
```

> splitPlan <- kWayCrossValidation(10, 3, NULL, NULL)</pre>

First fold (A and B to train, C to test)

```
> splitPlan[[1]]
## $train
## [1] 1 2 4 5 7 9 10
##
## $app
## [1] 3 6 8
```

Train on A and B, test on C, etc...

```
> split <- splitPlan[[1]]
> model <- lm(fmla, data = df[split$train,])
> df$pred.cv[split$app] <- predict(model, newdata = df[split$app,])</pre>
```


Final Model

Example: Unemployment Model

Measure type	RMSE	R^2
train	0.7082675	0.8029275
test	0.9349416	0.7451896
cross-validation	0.8175714	0.7635331

Let's practice!