Median imputation

Dealing with missing values

- Most models require numbers, can't handle missing data
- Common approach: remove rows with missing data
 - Can lead to biases in data
 - Generate over-confident models
- Better strategy: median imputation!
 - Replace missing values with medians
 - Works well if data missing at random (MAR)

Example: mtcars

- # Generate some data with missing values
- > data(mtcars)
- > set.seed(42)
- > mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA</pre>

```
# Split target from predictors
```

```
> Y <- mtcars$mpg
```

```
> X <- mtcars[, 2:4]
```

```
# Try to fit a caret model
> library(caret)
> model <- train(x = X, y = Y)
Error in train.default(x = X, y = Y) : Stopping
```


A simple solution

Now fit with median imputation

```
> model <- train(x = X, y = Y, preProcess = "medianImpute")</pre>
```

```
> print(model)
```

Random Forest

32 samples
3 predictor

```
Pre-processing: median imputation (3)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 32, 32, 32, 32, 32, ...
Resampling results across tuning parameters:
```

mtry	RMSE	Rsquared
2	2.617096	0.8234652
3	2.670550	0.8164535

RMSE was used to select the optimal model using the smallest value. The final value used for the model was mtry = 2.

Let's practice!

KNN imputation

Dealing with missing values

- Median imputation is fast, but...
- Can produce incorrect results if data missing not at random
- k-nearest neighbors (KNN) imputation
- Imputes based on "similar" non-missing rows

Example: missing not at random

- Pretend smaller cars don't report horsepower
- Median imputation incorrect in this case

```
# Generate data with missing values
```

```
> data(mtcars)
```

> mtcars[mtcars\$disp < 140, "hp"] <- NA</pre>

```
> Y <- mtcars$mpg
```

> X <- mtcars[, 2:4]</pre>

```
# Use median imputation
```

```
> set.seed(42)
```

```
> model <- train(x = X, y = Y, method = "glm",
```

```
preProcess = "medianImpute")
> print(min(model$results$RMSE))
```

```
[1] 3.612713
```

Assumes small cars have medium-large horsepower

Example: missing not at random

- KNN imputation is better
- Uses cars with similar disp/cyl to impute
- Yields a more accurate (but slower) model

```
# Use KNN imputation
> set.seed(42)
> model <- train(x = X, y = Y,
                  method = "glm",
                  preProcess = "knnImpute"
  print(min(model$results$RMSE))
[1] 3.558881
                Compare to 3.61 for median imputation
```


Let's practice!

Multiple preprocessing methods

The wide world of preProcess

- You can do a lot more than median or knn imputation!
- Can chain together multiple preprocessing steps
- Common "recipe" for linear models (order matters!) **Median imputation -> center -> scale -> fit** glm See ?preProcess for more detail

Example: preprocessing mtcars

- # Generate some data with missing values
- > data(mtcars)
- > set.seed(42)
- > mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA</pre>
- > Y <- mtcars\$mpg
- > X <- mtcars[,2:4]</pre>
- **Missing at random**

```
# Use linear model "recipe"
> set.seed(42)
> model <- train(</pre>
    x = X, y = Y, method = "glm",
    preProcess = c("medianImpute", "center", "scale")
> print(min(model$results$RMSE))
[1] 3.612713
```


Example: preprocessing mtcars

```
# PCA before modeling
> set.seed(42)
> model <- train(</pre>
    x = X, y = Y, method = "glm",
    preProcess = c("medianImpute", "center", "scale", "pca")
> min(model$results$RMSE)
[1] 3.402557
```


Example: preprocessing mtcars

```
# Spatial sign transform
```

```
> set.seed(42)
```

```
> model <- train(</pre>
```

```
x = X, y = Y, method = "glm",
preProcess = c("medianImpute", "center", "scale", "spatialSign"))
```

```
> min(model$results$RMSE)
```

```
[1] 4.284904
```


Preprocessing cheat sheet

- Start with median imputation
- For linear models...
 - Center and scale
 - Try PCA and spatial sign
- Tree-based models don't need much preprocessing

Try KNN imputation if data missing not at random

Let's practice!

Handling low-information predictors

No (or low) variance variables Some variables don't contain much information

- - Constant (i.e. no variance)
 - Nearly constant (i.e. low variance)
- Easy for one fold of CV to end up with constant column
- Can cause problems for your models
- Usually remove extremely low variance variables

Example: constant column in mtcars

- # Reproduce dataset from last video
- > data(mtcars)
- > set.seed(42)
- > mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA</pre>
- > Y <- mtcars\$mpg
- > X <- mtcars[, 2:4]</pre>

Add constant-valued column to mtcars #

> X\$bad <- 1

Example: constant column in mtcars

```
# Try to fit a model with PCA + glm
> model <- train(</pre>
    x = X, y = Y, method = "glm",
    preProcess = c("medianImpute", "center", "scale", "pca")
```

Warning in preProcess.default(thresh = 0.95, k = 5, method = c("medianImpute", :

These variables have zero variances: bad Something is wrong; all the RMSE metric values are missing:

RM	ISE	Rsqu	ared
Min.	: NA	Min.	: NA
lst Qu.	: NA	1st Qu.	: NA
Median	: NA	Median	: NA
Mean	:NaN	Mean	:NaN
3rd Qu.	: NA	3rd Qu.	: NA
Max.	: NA	Max.	: NA
NA's	:1	NA's	:1

caret to the rescue (again)

- "zv" removes constant columns
- "nzv" removes nearly constant columns

```
# Have caret remove those columns during modeling
> set.seed(42)
> model <- train(</pre>
    x = X, y = Y, method = "glm",
    preProcess = c("zv", "medianImpute", "center", "scale", "pca")
> min(model$results$RMSE)
[1] 3.402557
```


Let's practice!

Principle components analysis (PCA)

Principle components analysis

- Combines low-variance and correlated variables
- Single set of high-variance, perpendicular predictors
- Prevents collinearity (i.e. correlation among predictors)

PCA: a visual representation

10

- First component has highest variance
- Second component has second highest variance
- And so on...

- Lots of predictors
- Many of them low-variance
- Load the blood brain dataset # > data(BloodBrain) > names(bbbDescr)[nearZeroVar(bbbDescr)] "negative" "peoe_vsa.2.1" "peoe_vsa.3.1" "a_acid" 1 [5] "vsa_acid" "frac.anion7." "alert"


```
# Remove low-variance predictors
> set.seed(42)
> data(BloodBrain)
> model <- train(
    x = bbbDescr, y = logBBB, method = "glm",
    trControl = trainControl(method = "cv", number = 10, verbose = TRUE),
    preProcess = c("nzv", "center", "scale")
    )
> min(model$results$RMSE)
[1] 0.9796199
```



```
# Add PCA
> set.seed(42)
> data(BloodBrain)
> model <- train(
    x = bbbDescr, y = logBBB, method = "glm",
    trControl = trainControl(method = "cv", number = 10, verbose = TRUE),
    preProcess = c("zv", "center", "scale", "pca")
)
> min(model$results$RMSE)
[1] 0.9796199
```


Let's practice!

