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Median imputation



Machine Learning Toolbox

Dealing with missing values
● Most models require numbers, can’t handle missing data 

● Common approach: remove rows with missing data 

● Can lead to biases in data 

● Generate over-confident models 

● Be!er strategy: median imputation! 

● Replace missing values with medians 

● Works well if data missing at random (MAR)
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Example: mtcars
# Generate some data with missing values 
> data(mtcars) 
> set.seed(42) 
> mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA 

# Split target from predictors 
> Y <- mtcars$mpg 
> X <- mtcars[, 2:4] 

# Try to fit a caret model 
> library(caret) 
> model <- train(x = X, y = Y) 
Error in train.default(x = X, y = Y) : Stopping
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A simple solution
# Now fit with median imputation 
> model <- train(x = X, y = Y, preProcess = "medianImpute") 
> print(model) 
Random Forest  

32 samples 
 3 predictor 

Pre-processing: median imputation (3)  
Resampling: Bootstrapped (25 reps)  
Summary of sample sizes: 32, 32, 32, 32, 32, 32, ...  
Resampling results across tuning parameters: 

  mtry  RMSE      Rsquared  
  2     2.617096  0.8234652 
  3     2.670550  0.8164535 

RMSE was used to select the optimal model using the smallest value. 
The final value used for the model was mtry = 2. 
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KNN imputation
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Dealing with missing values
● Median imputation is fast, but… 

● Can produce incorrect results if data missing not at random 

● k-nearest neighbors (KNN) imputation 

● Imputes based on "similar" non-missing rows
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Example: missing not at random

# Generate data with missing values 
> data(mtcars) 
> mtcars[mtcars$disp < 140, "hp"] <- NA 
> Y <- mtcars$mpg 
> X <- mtcars[, 2:4] 

# Use median imputation 
> set.seed(42) 
> model <- train(x = X, y = Y, method = "glm",  
                 preProcess = "medianImpute") 
> print(min(model$results$RMSE)) 
[1] 3.612713

● Pretend smaller cars don’t report horsepower 

● Median imputation incorrect in this case Assumes small cars have 
medium-large horsepower
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Example: missing not at random

# Use KNN imputation 
> set.seed(42) 
> model <- train(x = X, y = Y,  
                 method = "glm",  
                 preProcess = "knnImpute" 
  ) 
> print(min(model$results$RMSE)) 
[1] 3.558881

● KNN imputation is be!er 

● Uses cars with similar disp / cyl to impute 

● Yields a more accurate (but slower) model

Compare to 3.61 for median imputation
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Multiple preprocessing 
methods
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The wide world of preProcess
● You can do a lot more than median or knn imputation! 

● Can chain together multiple preprocessing steps 

● Common "recipe" for linear models (order ma!ers!) 

● See ?preProcess for more detail
Median imputation -> center -> scale -> fit glm
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Example: preprocessing mtcars
# Generate some data with missing values 
> data(mtcars) 
> set.seed(42) 
> mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA 
> Y <- mtcars$mpg 
> X <- mtcars[,2:4] 

# Use linear model "recipe" 
> set.seed(42) 
> model <- train( 
    x = X, y = Y, method = "glm", 
    preProcess = c("medianImpute", "center", "scale") 
  ) 
> print(min(model$results$RMSE)) 
[1] 3.612713

Missing at random



Machine Learning Toolbox

Example: preprocessing mtcars
# PCA before modeling 
> set.seed(42) 
> model <- train( 
    x = X, y = Y, method = "glm", 
    preProcess = c("medianImpute", "center", "scale", "pca") 
  ) 
> min(model$results$RMSE) 
[1] 3.402557
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Example: preprocessing mtcars
# Spatial sign transform 
> set.seed(42) 
> model <- train( 
    x = X, y = Y, method = "glm", 
    preProcess = c("medianImpute", "center", "scale", "spatialSign")) 
> min(model$results$RMSE) 
[1] 4.284904
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Preprocessing cheat sheet
● Start with median imputation 

● For linear models… 

● Center and scale 

● Try PCA and spatial sign 

● Tree-based models don't need much preprocessing

Try KNN imputation if data 
missing not at random
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Handling  
low-information  

predictors
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No (or low) variance variables
● Some variables don't contain much information 

● Constant (i.e. no variance) 

● Nearly constant (i.e. low variance) 

● Easy for one fold of CV to end up with constant column 

● Can cause problems for your models 

● Usually remove extremely low variance variables
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Example: constant column in mtcars
# Reproduce dataset from last video 
> data(mtcars) 
> set.seed(42) 
> mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA 
> Y <- mtcars$mpg 
> X <- mtcars[, 2:4] 

# Add constant-valued column to mtcars 
> X$bad <- 1
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Example: constant column in mtcars
# Try to fit a model with PCA + glm 
> model <- train( 
    x = X, y = Y, method = "glm",  
    preProcess = c("medianImpute", "center", "scale", "pca") 
  ) 

Warning in preProcess.default(thresh = 0.95, k = 5, method = 
c("medianImpute",  : 
  These variables have zero variances: bad 
Something is wrong; all the RMSE metric values are missing: 
      RMSE        Rsquared   
 Min.   : NA   Min.   : NA   
 1st Qu.: NA   1st Qu.: NA   
 Median : NA   Median : NA   
 Mean   :NaN   Mean   :NaN   
 3rd Qu.: NA   3rd Qu.: NA   
 Max.   : NA   Max.   : NA   
 NA's   :1     NA's   :1   
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caret to the rescue (again)

# Have caret remove those columns during modeling 
> set.seed(42) 
> model <- train( 
    x = X, y = Y, method = "glm",  
    preProcess = c("zv", "medianImpute", "center", "scale", "pca") 
  ) 
> min(model$results$RMSE) 
[1] 3.402557

● "zv" removes constant columns 

● "nzv" removes nearly constant columns
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Principle components  
analysis (PCA)
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Principle components analysis
● Combines low-variance and correlated variables 

● Single set of high-variance, perpendicular predictors 

● Prevents collinearity (i.e. correlation among predictors)
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PCA: a visual representation
● First component has 

highest variance 

● Second component has 
second highest variance 

● And so on…
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Example: blood-brain data

# Load the blood brain dataset 
> data(BloodBrain) 
> names(bbbDescr)[nearZeroVar(bbbDescr)] 
[1] "negative"     "peoe_vsa.2.1" "peoe_vsa.3.1" "a_acid"       
[5] "vsa_acid"     "frac.anion7." "alert"       

● Lots of predictors 

● Many of them low-variance
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Example: blood-brain data
# Basic model 
> set.seed(42) 
> data(BloodBrain) 
> model <- train( 
    x = bbbDescr, y = logBBB, method = "glm", 
    trControl = trainControl(method = "cv", number = 10, verbose = TRUE), 
    preProcess = c("zv", "center", "scale") 
  ) 
> min(model$results$RMSE) 
[1] 1.107702     
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Example: blood-brain data
# Remove low-variance predictors 
> set.seed(42) 
> data(BloodBrain) 
> model <- train( 
    x = bbbDescr, y = logBBB, method = "glm", 
    trControl = trainControl(method = "cv", number = 10, verbose = TRUE), 
    preProcess = c("nzv", "center", "scale") 
  ) 
> min(model$results$RMSE) 
[1] 0.9796199
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Example: blood-brain data
# Add PCA 
> set.seed(42) 
> data(BloodBrain) 
> model <- train( 
    x = bbbDescr, y = logBBB, method = "glm", 
    trControl = trainControl(method = "cv", number = 10, verbose = TRUE), 
    preProcess = c("zv", "center", "scale", "pca") 
  ) 
> min(model$results$RMSE) 
[1] 0.9796199
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Let’s practice!


