
MACHINE LEARNING TOOLBOX

Median imputation

Machine Learning Toolbox

Dealing with missing values
● Most models require numbers, can’t handle missing data

● Common approach: remove rows with missing data

● Can lead to biases in data

● Generate over-confident models

● Be!er strategy: median imputation!

● Replace missing values with medians

● Works well if data missing at random (MAR)

Machine Learning Toolbox

Example: mtcars
Generate some data with missing values
> data(mtcars)
> set.seed(42)
> mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA

Split target from predictors
> Y <- mtcars$mpg
> X <- mtcars[, 2:4]

Try to fit a caret model
> library(caret)
> model <- train(x = X, y = Y)
Error in train.default(x = X, y = Y) : Stopping

Machine Learning Toolbox

A simple solution
Now fit with median imputation
> model <- train(x = X, y = Y, preProcess = "medianImpute")
> print(model)
Random Forest

32 samples
 3 predictor

Pre-processing: median imputation (3)
Resampling: Bootstrapped (25 reps)
Summary of sample sizes: 32, 32, 32, 32, 32, 32, ...
Resampling results across tuning parameters:

 mtry RMSE Rsquared
 2 2.617096 0.8234652
 3 2.670550 0.8164535

RMSE was used to select the optimal model using the smallest value.
The final value used for the model was mtry = 2.

MACHINE LEARNING TOOLBOX

Let’s practice!

MACHINE LEARNING TOOLBOX

KNN imputation

Machine Learning Toolbox

Dealing with missing values
● Median imputation is fast, but…

● Can produce incorrect results if data missing not at random

● k-nearest neighbors (KNN) imputation

● Imputes based on "similar" non-missing rows

Machine Learning Toolbox

Example: missing not at random

Generate data with missing values
> data(mtcars)
> mtcars[mtcars$disp < 140, "hp"] <- NA
> Y <- mtcars$mpg
> X <- mtcars[, 2:4]

Use median imputation
> set.seed(42)
> model <- train(x = X, y = Y, method = "glm",
 preProcess = "medianImpute")
> print(min(model$results$RMSE))
[1] 3.612713

● Pretend smaller cars don’t report horsepower

● Median imputation incorrect in this case Assumes small cars have
medium-large horsepower

Machine Learning Toolbox

Example: missing not at random

Use KNN imputation
> set.seed(42)
> model <- train(x = X, y = Y,
 method = "glm",
 preProcess = "knnImpute"
)
> print(min(model$results$RMSE))
[1] 3.558881

● KNN imputation is be!er

● Uses cars with similar disp / cyl to impute

● Yields a more accurate (but slower) model

Compare to 3.61 for median imputation

MACHINE LEARNING TOOLBOX

Let’s practice!

MACHINE LEARNING TOOLBOX

Multiple preprocessing
methods

Machine Learning Toolbox

The wide world of preProcess
● You can do a lot more than median or knn imputation!

● Can chain together multiple preprocessing steps

● Common "recipe" for linear models (order ma!ers!)

● See ?preProcess for more detail
Median imputation -> center -> scale -> fit glm

Machine Learning Toolbox

Example: preprocessing mtcars
Generate some data with missing values
> data(mtcars)
> set.seed(42)
> mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA
> Y <- mtcars$mpg
> X <- mtcars[,2:4]

Use linear model "recipe"
> set.seed(42)
> model <- train(
 x = X, y = Y, method = "glm",
 preProcess = c("medianImpute", "center", "scale")
)
> print(min(model$results$RMSE))
[1] 3.612713

Missing at random

Machine Learning Toolbox

Example: preprocessing mtcars
PCA before modeling
> set.seed(42)
> model <- train(
 x = X, y = Y, method = "glm",
 preProcess = c("medianImpute", "center", "scale", "pca")
)
> min(model$results$RMSE)
[1] 3.402557

Machine Learning Toolbox

Example: preprocessing mtcars
Spatial sign transform
> set.seed(42)
> model <- train(
 x = X, y = Y, method = "glm",
 preProcess = c("medianImpute", "center", "scale", "spatialSign"))
> min(model$results$RMSE)
[1] 4.284904

Machine Learning Toolbox

Preprocessing cheat sheet
● Start with median imputation

● For linear models…

● Center and scale

● Try PCA and spatial sign

● Tree-based models don't need much preprocessing

Try KNN imputation if data
missing not at random

MACHINE LEARNING TOOLBOX

Let’s practice!

MACHINE LEARNING TOOLBOX

Handling
low-information

predictors

Machine Learning Toolbox

No (or low) variance variables
● Some variables don't contain much information

● Constant (i.e. no variance)

● Nearly constant (i.e. low variance)

● Easy for one fold of CV to end up with constant column

● Can cause problems for your models

● Usually remove extremely low variance variables

Machine Learning Toolbox

Example: constant column in mtcars
Reproduce dataset from last video
> data(mtcars)
> set.seed(42)
> mtcars[sample(1:nrow(mtcars), 10), "hp"] <- NA
> Y <- mtcars$mpg
> X <- mtcars[, 2:4]

Add constant-valued column to mtcars
> X$bad <- 1

Machine Learning Toolbox

Example: constant column in mtcars
Try to fit a model with PCA + glm
> model <- train(
 x = X, y = Y, method = "glm",
 preProcess = c("medianImpute", "center", "scale", "pca")
)

Warning in preProcess.default(thresh = 0.95, k = 5, method =
c("medianImpute", :
 These variables have zero variances: bad
Something is wrong; all the RMSE metric values are missing:
 RMSE Rsquared
 Min. : NA Min. : NA
 1st Qu.: NA 1st Qu.: NA
 Median : NA Median : NA
 Mean :NaN Mean :NaN
 3rd Qu.: NA 3rd Qu.: NA
 Max. : NA Max. : NA
 NA's :1 NA's :1

Machine Learning Toolbox

caret to the rescue (again)

Have caret remove those columns during modeling
> set.seed(42)
> model <- train(
 x = X, y = Y, method = "glm",
 preProcess = c("zv", "medianImpute", "center", "scale", "pca")
)
> min(model$results$RMSE)
[1] 3.402557

● "zv" removes constant columns

● "nzv" removes nearly constant columns

MACHINE LEARNING TOOLBOX

Let’s practice!

MACHINE LEARNING TOOLBOX

Principle components
analysis (PCA)

Machine Learning Toolbox

Principle components analysis
● Combines low-variance and correlated variables

● Single set of high-variance, perpendicular predictors

● Prevents collinearity (i.e. correlation among predictors)

Machine Learning Toolbox

PCA: a visual representation
● First component has

highest variance

● Second component has
second highest variance

● And so on…

Machine Learning Toolbox

Example: blood-brain data

Load the blood brain dataset
> data(BloodBrain)
> names(bbbDescr)[nearZeroVar(bbbDescr)]
[1] "negative" "peoe_vsa.2.1" "peoe_vsa.3.1" "a_acid"
[5] "vsa_acid" "frac.anion7." "alert"

● Lots of predictors

● Many of them low-variance

Machine Learning Toolbox

Example: blood-brain data
Basic model
> set.seed(42)
> data(BloodBrain)
> model <- train(
 x = bbbDescr, y = logBBB, method = "glm",
 trControl = trainControl(method = "cv", number = 10, verbose = TRUE),
 preProcess = c("zv", "center", "scale")
)
> min(model$results$RMSE)
[1] 1.107702

Machine Learning Toolbox

Example: blood-brain data
Remove low-variance predictors
> set.seed(42)
> data(BloodBrain)
> model <- train(
 x = bbbDescr, y = logBBB, method = "glm",
 trControl = trainControl(method = "cv", number = 10, verbose = TRUE),
 preProcess = c("nzv", "center", "scale")
)
> min(model$results$RMSE)
[1] 0.9796199

Machine Learning Toolbox

Example: blood-brain data
Add PCA
> set.seed(42)
> data(BloodBrain)
> model <- train(
 x = bbbDescr, y = logBBB, method = "glm",
 trControl = trainControl(method = "cv", number = 10, verbose = TRUE),
 preProcess = c("zv", "center", "scale", "pca")
)
> min(model$results$RMSE)
[1] 0.9796199

MACHINE LEARNING TOOLBOX

Let’s practice!

