O

MACHINE LEARNING TOOLBOX

Random forests
and wine




DataCamp Machine Learning Toolbox @

Random forests

o Populartype of machine learning model

e Good for beginners
e Robustto overfitting

e Yield very accurate, non-linear models
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Random forests

o Unlike linear models, they have hyperparameters

e Hyperparameters require manual specification
e (Canimpact model fit and vary from dataset-to-dataset

o Default values often OK, but occasionally need adjustment
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Random forests

e Start with a simple decision tree

e Decision trees are fast, but not very accurate

Wine Quality Decision Tree
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Random forests

e |mprove accuracy by fitting many trees

e Fiteach oneto abootstrap sample of your data
o (alled bootstrap aggregation or bagging

e Randomly sample columns at each split
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Random forests

Load some data
library(caret) . | | | | | |
library(mlbench) 0.800 - )
data(Sonar)
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Set seed
> set.seed(42)
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# Fi1t a model

> model <- train(Class~.,
data = Sonar,
method = "ranger"

Accuracy (Bootstrap)

0.780 -

0.775 —
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# Plot the results #Randomly Selected Predictors
> plot(model)
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Explore a wider
model space



DataCamp Machine Learning Toolbox @

Random forests require tuning

o Hyperparameters control how the model is fit

o Selected "by hand" before the model is fit
e Mostimportantismtry

e Number of randomly selected variables used at
each split

e Lower value =morerandom
e Highervalue =less random

e Hardto know the best value in advance
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caret totherescue!

e Notonlydoes caret do cross-validation...
o Italsodoes gridsearch

e Select hyperparameters based on out-of-sample error
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Example: sonar data

e tunelLengthargumenttocaret::train()

e Tells caret how many different variations to try

Load some data
library(caret)
library(mlbench)
data(Sonar)
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Fit a model with a deeper tuning grid
> model <- train(Class~., data = Sonar,
method = "ranger", tunelLength = 10)

# Plot the results
> plot(model)
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Plot the results
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Custom tuning grids
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Pros and cons of custom tuning

e Pass custom tuning grids to tuneGrid argument

e Advantages

e Most flexible method for fitting caret models
e Complete control over how the model is fit

o Disadvantages
e Requires some knowledge of the model

e (Candramatically increase run time
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Custom tuning example

# Define a custom tuning grid
> myGrid <- data.frame(mtry = c(2, 3, 4, 5, 10, 20))

# Fi1t a model with a custom tuning grid

> set.seed(42)

> model <- train(Class ~ ., data = Sonar, method = "ranger",
tuneGrid = myGrid)

# Plot the results
> plot(model)



DataCamp Machine Learning Toolbox @

Custom tuning
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Introducing g Lmnet

e Extension of g Lm models with built-in variable selection
o Helps deal with collinearity and small samples sizes

e Two primary forms

O | asso regres SlOoNn Penalizes number of non-zero coefficients

O Ri dg e regres S|ON Penalizes absolute magnitude of coefficients

e Attempts to find a parsimonious (i.e. simple) model

e Pairs well with random forest models
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Tuning g Lmnet models

o (Combination of lasso and ridge regression

e (Can fit a mix of the two models
e alphalo,1]: purelassoto pureridge

e lambda (o, infinity): size of the penalty

Machine Learning Toolbox @
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Example: "don't overfit"

# Load data

> overfit <- read.csv("http://s3.amazonaws.com/assets.datacamp.com/
production/course_1048/datasets/overfit.csv")

# Make a custom trainControl

> myControl <- trainControl(
method = "cv'", number = 10,
summaryFunction = twoClassSummary,
classProbs = TRUE, # Super 1important!
verboselter = TRUE
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Try the defaults

# Fi1t a model

> set.seed(42)

> model <- train(y ~ ., overfit, method = "glmnet",
trControl = myControl)

# Plot results
> plot(model)

e 3valuesofalpha

e 3valuesof Lambda
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Plot the results

Regularization Parameter
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g Lmnet with
custom tuning grid
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Custom tuning g Lmnet models

e 2tuning parameters: alphaand Lambda

e Forsinglealpha, all values of Lambda fit simultaneously

e Many models for the "price" of one
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Example: g Lmnet tuning

# Make a custom tuning grid
> myGrid <- expand.grid(
alpha = 0:1,
lambda = seq(0.0001, 0.1, length = 10)

)

# Fi1t a model

set.seed(42)

> model <- train(y ~ ., overfit, method = "glmnet",
tuneGrid = myGrid, trControl = myControl)

\4

# Plot results
> plot(model)
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Compare models visually
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| > plot(modelSfinalModel)

76

Full reqularization path
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